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Abstract—In recent years, Fiber Reinforced Plastics (FRP) have been used in different civil engineering applications because of their in-

herent properties, which include high resistance to loads and environmental conditions. These materials are available in variety of forms in-

cluding rebars, which have been already manufactured and used abroad in reinforcing of concrete elements in several projects. Unfortu-

nately, these rebars have not been yet widely produced in Egypt. This research is the second phase of a research began by producing FRP 

rebars locally. In this first phase, short-term tensile properties of locally produced FRP rebars have been investigated. The aim of the current 

research is to assess the creep behavior of the locally produced FRP rebars under sustained load and comparing this behavior with that of 

the imported rebars in order to check the adequacy of the locally produced GFRP rebars for structural purposes. For this purpose, creep 

tests have been conducted on both locally and imported rebars under four levels of sustained service load (nominally 15%, 30%, 45% and 

60% of the average ultimate tensile strength) with a creep test duration of 10000 hours (417 days). At the end of the test duration, the sam-

ples were tested statically to investigate their residual tensile properties. It has been found out that the creep behavior of the locally pro-

duced rebars is comparable to those of the imported ones with the same diameter and approximately the same fiber volume fraction. Creep 

rupture stress limit was found to be less than 60% of average ultimate tensile strength for the locally produced rebar. Locally produced re-

bars were found, however, to be satisfying the creep rupture stress limit state stated in ACI 440.1R-15. The Microstructural analysis indicat-

ed that there is no degradation in the matrix or the fiber-matrix interface within the GFRP bars after the lengthy duration under sustained 

load up to 45% of the average ultimate tensile strength. 
 

Index Terms—Glass fiber-reinforced polymers (GFRP), Reinforcing bars, Creep behavior, Serviceability, Sustained service load 

——————————      —————————— 

1 INTRODUCTION                                                                     

IBER reinforced polymer (FRP) materials are gaining wider 
acceptance for use as primary reinforcement in concrete 
structures. Due to its high strength and non-corrosive na-

ture, FRP provides an alternative to steel reinforcement. The use 
of FRP as structural reinforcement, in turn, provides the poten-
tial advantage of lowered maintenance costs and extended ser-
vice life for several types of structures, including bridge deck 
slabs, abutments, walls and other structures exposed to corro-
sive environments [1],[2]. In the past two decades, a plenty of 
researches have taken place on fiber reinforced polymer rein-
forced concrete (FRP-RC) [3],[4],[5]. A better understanding is 
now available on paramount characteristics such as strength, 
stiffness, bending, and shear and FRP-concrete bond. Existing 
guidelines and specifications provide practitioners with the 
tools they need for the design and construction of FRP-RC 
structures [6],[7],[8]. Guidelines are periodically updated to re-
flect advancements in the state-of-the-art and allow for more 
efficient design where possible. 
 

Under sustained load, FRP bars suffer plastic (perma-
nent) deformation, typically occurring under unfavorable envi-
ronments over a long time. This phenomenon is what is com-

monly referred to as “Creep”. Creep typically increases the long 
term deflection of FRP reinforced concrete elements and may, 
under certain circumstances, cause catastrophic failure [9]. De-
spite its higher tensile strength over conventional steel, FRP 
exhibits less tensile and shear stiffness. As a result of the rela-
tively lower axial stiffness of the FRP bars, FRP reinforced con-
crete members deform more than their steel reinforced counter-
parts. Therefore, when FRP bars and tendons are used as rein-
forcement bars and prestressed tendons, the long-term tensile 
behavior of these materials must be taken into account in addi-
tion to their short-term behavior [10],[11]. Moreover, creep be-
havior of GFRP is also affected with other adverse environmen-
tal conditions yielding a more pronounced effect on GFRP rein-
forced concrete [12]. Consequently the design of FRP reinforced 
concrete members is predominantly governed by serviceability 
requirements.  

Based on the findings of researchers such as Yamaguchi 
et al. [13] and Seki et al. [14] and using the most conservative 
results available in literature, ACI 440.1R-15 [6] design guideline 
has assigned GFRP reinforcement the creep rupture stress limit 
of 20 % of the bar’s tensile strength. Nevertheless, several stud-
ies [15] and [16] indicated that if the sustained stress is less than 
60 % of the average ultimate tensile strength (fu,ave), creep rup-
ture is less likely to occur. They have also suggested that creep 
rupture stress limits is varying between 45% and 60% (fu,ave). 
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TABLE 4
L-BARS CREEP-TEST RESULTS (60 % fu,ave) 

Nominal 

Applied 

Load 

εfrp,0 

εfrp,0 /εu,ave  

ratio 

( %)   

εfrp,0 /ε*fu 

ratio 

( % )   

Creep‐rupture 

Time 

(hour)  

Creep Strain In‐

crease at Rupture 

Time 

(με)a 

Creep 

Strain/Initial 

Strain at Rup‐

ture Time (%) 

60%fu,ave   14030  75.3  87.0  14.6  332  2.4 
 

a Creep strain readings were taken manually; the measurements taken are expected to be less than the actual value at rupture time. 

 
 

TABLE 3
L-BARS CREEP-TEST RESULTS (15 %, 30 %, AND 45 % fu,ave) 

Nominal 

Applied 

Load 

εfrp,0 

εfrp,0 /εu,ave  

ratio 

( %)   

εfrp,0 /ε*fu  

ratio 

( %)   

Creep Strain (Strain In‐

crease) 

(με) after 

Creep Strain/Initial 

Strain ratio (% of actual 

initial strain) after 

1000 

hrs 

3000 

hrs 

10000 

hrs 

1000 

hrs 

3000 

hrs 

10000 

hrs 

15%fu,ave   2105  11.3  13.1  35  34  53  1.7  1.5  2.5 

30%fu,ave   5600  30.0  34.7  206  230  308  3.7  4.1  5.5 

45%fu,ave   8977  48.2  55.7  633  757  843  7.1  8.4  9.4 

 

TABLE 2
I-BARS CREEP-TEST RESULTS (15 %, 30 %, 45 % AND 60 % fu,ave) 

Nominal 

Applied 

Load 

εfrp,0 

εfrp,0 /εu,ave 

ratio 

( %) 

εfrp,0 /ε*fu 

ratio 

( %) 

Creep Strain (Strain In‐

crease) 

(με) after 

Creep Strain/Initial 

Strain ratio (% of actual 

initial strain) after 

1000 

hrs 

3000 

hrs 

10000 

hrs 

1000 

hrs 

3000 

hrs 

10000 

hrs 

15%fu,ave  2631  14.4  16.5  155  145  239  5.9  5.5  9.1 

30%fu,ave  5674  31.1  35.7  74  39  29  1.3  0.7  0.5 

45%fu,ave  8195  45.0  51.5  192  179  339  2.3  2.2  4.1 

60%fu,ave  10416  57.2  65.4  ‐101  179  292  ‐0.9  1.7  2.8 

IJSER



Intern
ISSN 2

3.2 R
M

After
were 
tests 
For b
burri
sidua
The m
about
was a
elasti
the o
to be 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.3 M
The f
at the
nome
and/
spect
using
test d
hind 

Figu

national Journal o
2229‐5518 

Residual Ten
Modulus) 
r the elapse o
 dismantled 
were conduct

both I-Bars an
ng of the fibe

al strength wa
maximum per
t 4 % for 60 %
almost 5 % for
icity, the resid

original values
 46.2 GPa 41.0

Microstructu
formation of m
e interface of
ena occurring
or adverse en

t, Scan Electro
g selected sam
duration to ha
 strength loss, 

Figure 6: 

ure 7: Residual te

of Scientific & En

nsile Properti

of the test du
from their co

ted to obtain r
nd L-Bars spec
ers, as shown 
as barely affec
rcentage loss i
% fu,ave. The co
r 45 % fu,ave (Fi

dual values sh
s. The average
 GPa for I-Bar

ral Analysis 
microcracks in
f fibers/matrix
g in a GFRP m
nvironment [1
on Microscopy

mples of the te
ave a better un
 if any. 

Typical mode of

ensile strength fo

ngineering Resea

ies (Strength

uration (10000 
omprising fra
esidual mecha

cimens, the ru
in Figure (6).

cted by creep
in strength for
orresponding 
gure 7). As fo

howed barely a
e residual mod
rs and L-Bars, 

n the resin an
x are the mos
material unde
15], [21], and 
y - SEM - ana

ested bars afte
nderstanding 

f failure of tested

or I-Bars bars an

rch, Volume 10, 

htt

h and Young’

 hours), all b
ames and ten
anical propert

upture mode w
 The average 
 tests (Figure 
r I-Bars bars w
value for L-B
r the modulus
any change fr
dulus was fou
respectively. 

d the debond
st common p
r sustained lo
 [12]. In this 
alysis took pl

er the 10000 ho
of the causes 

 

 rebars 

 

d L-Bars bars 

Issue 11, Novem

IJSER © 2019 
tp://www.ijser.org  

’s 

bars 
sile 

ties. 
was 
 re-
 7). 

was 
Bars 
s of 
rom 
und 

ing 
phe-
oad 
re-

lace 
our 
be-

M
images 
fu,ave aft
types ha
no indu
fu,ave) for
I-Bars. F
around 

T
tioned b
the con
ing as w
after 13

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

4 SUMM

Creep b
and im
hours (
nomina
tensile s
from th



 

Figur

hours 

mber‐2019           

Micrographs, i
 of I-Bars and
ter creep test 
ad no signs of

uced microcra
r L-Bars and u
For L-Bars, su
 the fibers (Fig

This noticed d
before, the di

nstituents and 
well could jus
.8 hours. 

MARY AND C
behavior tests 

mported GFRP 
(417 days at 
ally (15 %, 30 
strength fu,ave).

he current rese
Unlike I-Bars
imen at 60 %
ticed in I-Bar
els, which in
imported bar
results show

re 8: Magnified s

 of loading: (a) I-

in Figure 8, sh
d L-Bars subje

duration. Res
f debonding b

acks under the
under sustain

ubjected to 60 
gure 8c).  

debonding ini
fference in qu
 the manufactu
stify the ruptu

CONCLUSION 
 were conduct

P reinforcing b
different leve
% 45 % and 6
. The followin

earch study:  
s, creep ruptu

% fu,ave wherea
rs specimens u
n turn reflect
rs which is ex

wed clearly tha

(a) 

(c) 

 

samples’ cross se

-Bars at 60 % fu.

Bars at 60 % f

(b) 

how magnified
ected to 45 % 
sults showed 

between fibers
e sustained lo

ned load level 
% fu,ave, thin v

tiation may re
uality control 
uring process

ure of L-Bars t

ted on both loc
bars over a pe
els of axial su
60 % of the av
ng conclusions

re took place i
as no creep ru
under all susta
s a slight hig

xpected. Howe
at the locally 

 

 

ection after exhib

ave; (b) L-Bars a

fu.ave 

 

6          

d cross-section
fu,ave and 60 %
 that both ba

s and resin and
oad level (45 %

(60 % fu,ave) fo
voids appeared

eflect, as men
on both level
. This debond
that took plac

cally produced
eriod of 1000
ustained load

verage ultimat
s can be drawn

in L-Bars spec
upture was no
ained load lev

gher quality o
ever, creep tes
 manufactured

biting 10000 

t 45 %; (c) L-

                     

n 
% 
ar 
d 
% 
or 
d 

n-
s 

d-
e 

d 
0 

d, 
e 
n 

c-
o-
v-
of 
st 
d 

IJSER



International Journal of Scientific & Engineering Research, Volume 10, Issue 11, November‐2019             7                               
ISSN 2229‐5518 

IJSER © 2019 
http://www.ijser.org  

GFRP bars rupture in creep at stress level lies clearly 
beyond the stress limits specified by ACI 440.1R-15. 

 No change was detected in residual tensile strength 
and modulus of elasticity for all samples that sur-
vived the 10000 hour duration and all reinforcing bars 
have almost retained their initial full strength.  

 Microstructural analysis illustrated that no mi-
crocracks were found in reinforcing bars of both types 
up to 45 % fu,ave. Under sustained load level of 60 % 
fu,ave, debonding has initiated in L-Bars, whilst, no 
cracks or deboning was noticed in case of I-Bars. Mi-
crostructure analysis emphasized, as mentioned be-
fore, the better quality of I-Bars compared with L-
Bars.  

 Based on the investigations carried out in the current 
research, it has been emphasized that the creep stress 
limits imposed by ACI 440.1R-15 on GFRP reinforce-
ment underestimate the stresses GFRP bars can actu-
ally sustain. 

 Creep test results of the current study in addition to 
the results of first phase of this research carried out in 
2005; refer to the adequacy of the locally produced 
GFRP reinforcing bars to be used as reinforcement for 
concrete structures. 

 As a recommendation for further research, it is rec-
ommended to perform creep test under severe envi-
ronmental conditions, such as alkalinity and high 
temperature, for test durations not less than 10000 
hours to be able to propose new creep rupture stress 
limits which could be higher than those specified in 
ACI 440.1R-15.  
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